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SUMMARY

The stable steering of any vehicle requires that there be ap-

plied to it (1) a restoring or directing torque for turning to a re-

quired direction, and (2) a damping torque by which all rotations

and librations, whether original or caused by the first torque,

may be eliminated by immediate dissipation of energy. A damping

torque which is predictable and readily available for steering

vehicles in outer space is demonstrated by precise studies of the

magnetic rotational damping of Vanguard Satellites I and II (1958

Beta 2 and 1959 Alpha i, respectively).
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ROTATIONAL MAGNETODYNAMICS AND

STEERING OF SPACE VEHICLES*

by

Raymond H. Wilson, Jr.

Goddard Space Flight Center

INTRODUCTION

Even when artificial satellites were still merely theoretical possibilities, the widely

used principle of eddy-current braking had suggested that the spin motion of such freely

orbiting bodies would be perturbed and dampened by the various magnetic fields of the

earth, of other bodies of the solar system, and of the galactic system. The necessity for

predicting, explaining, and analyzing the rotational motions of metallic space vehicles led

to the following rigorous derivation of equations of motion for the special cases of rigid

axisymmetrical distributions of matter rotating in magnetic fields. Later, when such

satellites were actually launched and their rotation had been observed, the expected per-

turbations and spin decay clearly appeared. Precise numerical confirmation of the for-

mulas was possible for the first two Vanguard satellites, 1958 Beta 2 and 1959 Alpha 1.

The surprisingly large damping couple acting on Vanguard II (due to the high magnetic

permeability of some of its parts, since the couple varies as the square of the perme-

ability) has suggested the planning and control of such reactions with exterior magnetic

fields to stabilize and steer space vehicles.

ELEMENTAL DAMPING TORQUE ON AXIALLY SYMMETRIC

CONDUCTORS ROTATING IN A MAGNETIC FIELD

Since this report will derive the magnetic damping of shells and solids of revolution

by integration of torques on ring elements, the appropriate couple on an elemental ring

* Paper presented at the Astrodynamics Colloquium of the XIth International Astronautical

Congress, Stockholm, Sweden.
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must first be ascertained. Many textbooks (e.g., Reference 1) show demonstrations based

on Lenz's Law and other elementary principles that the braking couple c acting at any

time t on a thin plane conducting ring of any shape (Figure 1), with enclosed area A and

electrical resistance R, rotating with angular velocity _ in a magnetic field with a com-

ponent H perpendicular to the axis of rotation, is given by

C - A2_2H2w (cos a cos 2 _t + sin ct cos wt sin wt) , (l)

_/L2oj 2 + R 2

where L is the inductance of the ring, _ = arctan(L_v/R), # iS the effective magnetic per-

meability of the ring, and _t measures the angle from the plane of the ring to the

magnetic-field component perpendicular to the spin axis. If this ring is considered an

elemental zone of a continuous shell or solid of revolution, the orientation must be con-

sidered at all times to be at the maximum value of c (since there will always be a zone

of such orientation); whereas, for an insulated ring or solenoid, the mean value over a

complete cycle should be taken. Only the latter case is considered in the textbooks;

therefore the necessary results of the former assumption wiU be developed here.

Differentiation of Equation i with respect to time leads to ,_t = _/2 as the condition

for maximum C, so that the quantity in parentheses has a maximum value of (I + cos _)/2.

For comparison, the mean value (which would be used in the case of an insulated ring) is

(cos _)/2, which is less than half as great. By the definitions given with Equation 1,

COS Ct :
R

v/L2_o2 + R 2

and the following equation for the torque on an elemental ring of a continuous shell is

obtained:

,_C : A2/_2H2v (R + _/L2oj2+ R2)
2(L2a) 2 + R 2)

which may be written in the form

A2_z2H2_
5C -

2R -- --2_ -

1 + _A2

(2)

(3)

The inductance and resistance of the ring are, respectively,

L = b n ---- 4 +

772a

and

b
R =

cr_t

(4)



where b is the lengthof the ring, _ its conductivity, and a its conducting cross-sectional

area. Now, for the elemental ring of a continuous solid, at least one of the dimensions

of its cross section a will be infinitesmal, so we may apply L'Hospital's Rule to the ratio

given by Equation 4 to find that, as the ring becomes thinner,

lim (__)= lim (era)= 0,a_0 a_0 (5)

so that terms containing a 2 as a factor will disappear from F__luation 3 as infinitesimals

of higher order. Thus, substituting Equations 4 and 5 into Equation 3, we obtain

AC - °'A 2_2H2_a (6)
b

as the elemental magnetic couple of a continuous solid.

!

¢J

ROTATIONAL DAMPING OF SPHERICAL SHELLS AND SPHERES

In the case of a spherical body, the elemental ring may be a circular zone perpen-

dicular to, and centered on, a line normal to the spin axis at the center of the sphere

(Figure 2). Such a zone is defined by its latitude ¢, that is, the angle at the center of the

sphere from the spin axis to the zone, and by its distance r from the center of the sphere.

For such an element, a = r A¢ Ar, b : 2_r cos ¢, and A : _r 2 cos2¢ , SO that the ele-

ment of couple is, from Equation 6,

1
AC = _ cr_2H2_or 4 cos 3 ¢ A_b Ar . (7)

To obtain the total couple, Equation 7 is integrated throughout the body, giving

C = °_/_2H2w f r 4 cos3 ¢ de dr.

r 0

(8)

For a thin spherical shell of thickness Ar, such as the outer structure of an artificial

satellite, integration with respect to _ alone would give the sufficiently good approxima-

tion to the couple:

C : 2 cr_7_2H2wr4 Ar . (9)

Setting this torque in the Newtonian equation of motion as equal to -I dco/dt, where I is

the moment of inertia of the body, and integrating, we have

3I C°o
t - t o : In -- . (10)

2CrTr_2H2r4 Ar co
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For a simple spherical shell of constant density p, I = 8_pr4 Ar/3, SO that

co o
t - to = 4p in --,

_2H2 _ (ii)

which is independent of the dimensions of the shell. Here the coefficient of the logarithm

would be the relaxation time, i.e., the time required for the angular speed of rotation

to be reduced by the factor 1/e.

To obtain the total damping couple on a thick shell or solid sphere, it is necessary

to integrate Equation 9 between the limits r 0 and r :

2
C = y_- o_2H2_(rS - roS) . (12)

Setting this torque in the Newtonian equation for rotation as equal to -I dco/dt and setting

r o = 0, we obtain, for a solid homogeneous sphere,

In = 2c_/2H2rS (t - to) (13)1SI

But, for a solid homogeneous sphere of radius r and density p, I = 8_prS/1S. Hence,

= 4p - to) ' (14)

which is independent of the radius and mass of the sphere and is equivalent to Equation
11, as would be expected.

Using a different approach, namely, analysis of heat loss through induced cur-

rents as measuring the loss of rotational energy of a solid sphere, Hertz (Reference

2) obtained substantially the same result as Equation 14. However, from a prac-

tical standpoint, a relative disadvantage of the Hertz approach would seem to be the diffi-

culty of adapting it to nonspherical conductors or even to spheroids of moderate eccen-

tricity. The extreme simplicity of this result depends on the assumption, implied in the

present derivation, that conditions allow effectively instantaneous alignment of induced

annular currents, so that the maximum element of torque derivable from Equation 1 may

be assumed. This assumption tends to weaken under circumstances, not only of high

conductivity and magnetic induction (which may be neglected for the present purposes),

but especially of largelinear rotational velocities of the rotating conductor, as was shown

specifically in a later review of the Hertz problem by Gans (Reference 3). However, the

inaccuracy of this theory for natural cosmic applications, due to the relatively large

dimensions, is partly offset by the relatively lower conductivities, permeabilities, and

field strengths usually involved. In any case the inaccuracy is far less than the present

numerical uncertainty of these electrical and magnetic properties for astronomical

bodies, either natural or artificial.

!
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ROTATIONAL DAMPING OF NONSPHERICAL

BODIES OF REVOLUTION

The damping couple on any continuous solid may be obtained by integrating Equation 6

throughout the body after appropriate expressions for A, the area enclosed by an elemen-

tal ring; a, the conducting cross section of this ring; and b, the length of this ring, have

been substituted. Numerical integration methods for specific shapes may be used when

general analytical methods prove to be difficult or intractable. Schematic formulas for

solid prolate and oblate spheroids have been worked out by Gans (Reference 3). Among

other solids of revolution having wide application in space vehicles is the cylindrical

shell, for which a general solution will now be derived.

Rotation of a Cylindrical Shell About

Its Axis of Symmetry

In the case of a right cylindrical shell rotating about its axis of symmetry, the ele-

mental ring would be a rectangle and, for a closed circular cylinder of radius r and length h,

A = 2hr cos ¢

hr A_ Ar + 2r2cos2_ A¢ Ar

: , (is)
h + 2r cos¢

b = 2(h + 2r cos_),

where ¢ is the central angle in the base of the cylinder from the diameter normal to

the magnetic field measured to the chord of the elemental ring. Substituting Equations

15 in Equation 6 leads to the integral for the total couple on a solid cylinder:

C = 4_ _2H2wh2 f; r 3

0

(h cos2¢ + 2r Cos4_b)d ¢"

(h + 2r cos¢ )2
dr. (16)

For a thin cylindrical shell of thickness Ar, integration with respect to ¢ alone yields a

sufficiently good approximation to the couple, so that in terms of k = 2r/h:



C = o'_2H 2wh4k
I 2 2

3 - 4K

k(1-k) _i-k 2

arctan
1 + k

_r_

(17)

for k<l; and

C = _H2_h4k

3 - 4k

2k(1-k)
lOge

_rr

(18)

for k>l. By first setting h = 2r in Equation 16:

C = _8Tr 160-) 2H2c_r'3 c_ &r

for k = 1.

(19)

Setting the value of the couple in the Newtonian equation of motion gives, after in-

tegration, for any shaped body rotating under a torque C

= Wo exp

Since, for a thin cylindrical shell rotating about its geometric axis,

(20)

I : _pr a (r+2h) &r, (21)

substituting Equations 21 and 17, 18 or 19 into Equation 20 gives the rotational rate co

at time t for such a shell. For the special case k = 1, Equation 19 becomes

2 (27_-80)_2H 2 (to-t)
= w0 exp

15_p ' (22)

and, like Equation 14 for the sphere, is independent of the mass and dimensions of the

cylinder.
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Rotation of a Cylinder About an Axis Perpendicular

to the Geometrical

For the long cylindrical shells commonly used in space vehicles in which h > r J_-,

rotation about the geometric axis is unstable because the moment of inertia would be

greater about a transverse axis perpendicular to the geometrical. In this case, there-

fore, the existence of any external torque such as magnetic damping would produce a body

precession for which the inclination would gradually increase, as in a dying top, until the

stable transverse body axis should be attained. Hence, for a more complete discussion of

the magnetic damping of a cylinder, it will be necessary to consider rotation about an axis

perpendicular to its geometrical axis, although still assuming symmetry of mass and

resultant geometrically central location of this transverse axis.

When using the present technique of integrating throughout the body the couple on an

elemental conducting ring, two possible forms of this ring must be considered in this case.

The first possible element would be a circular ring always perpendicular to and centered

on the geometrical axis of the cylinder, and the second a rectangular ring parallel to the

geometrical axis such as was used in the preceding discussion of rotation about the geo-
metrical axis.

An important difference from the derivation of damping about the geometrical axis

is that in the present specific case there must be used, not the maximum value of each

elemental couple, but the mean value, which is half as great. Equation 6, thus modified

for each value, would read

_C : °_A2_2H2_a (23)
2b

However, the total _C would be the sum of those for two such perpendicular elemental

rings. To check this principle, consider rotation about the axis of revolution: in this

case the corresponding rings are equal, so that the total torque is again the same as

Equation 6.

The mean element of the damping couple for the circular elemental rings of a cyl-

inder from Equation 23 is

_C 1 = lo-_#2H2_r3 ,_h ,Sr, (24)
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where r is the dimension perpendicular to the geometrical axis, h the dimension along

the axis, and _ 1 the effective mean permeability for a field normal to the axis. The mean

element of the couple on the rectangular rings would be half that given by Equation 16:

2_2H2cvh2rS(h cos2¢+2r cos'C)_
AC 2 = A_5 Ar,

Ih+2r cos¢)2 (25)

where ¢ is the third cylindrical coordinate, and u 2 should be the mean permeability for a

field parallel to the axis of the cylinder. Integrating Equation 25 immediately gives the re-

sult for a shell of thickness _r as half that given by Equations 17, 18 and 19:

I

_J
O

O

_#_H 2c_h 4k F_
2-2k I

fork<l; and

3-4k

k( 1-k)/l-k 2 (26)

- + 1 + - I + I-----j--
2 2 2-2k

fork > 1;

for k = 1.

3-4k log e (k + k¢__:l-1) Ar

2k( l-k)/k _-I (27)

( 80)C 2 : 9- 3 _#]H2_r'Ar (28)

Integration of Equation 24 for the couple on the circular elements of such a shell

should be carried out separately for the ends and for the lateral surface of the cylinder.

For the ends, integration is with respect to r, keeping Ah constant as the thickness of

the shell. On the other hand, for the lateral surface, integration would be with respect to

h, with r and Ar held constant. Thus
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)C1 = 4"1 o._w21H2_j r 4 Ah + r3h _r • (29)

Since Ah : 5r for a shell of uniform thickness such as has been assumed in deriving

Equations 26 to 28, Equation 29 becomes

1 22 (1__ )r 3 (30)C 1 = ¥ o_/zlH _' r + 11 Ar .2

Adding the appropriate Equation (26, 27, or 28) to Equation 30 gives the total damping

torque, on a cylindrical shell of radius r and height h rotating about a transverse axis,

due to a magnetic field H normal to this axis. The corresponding equation of rotational

motion is found by substituting the total torque for C in Equation 20, and putting the

moment of inertia I equal to that of the cylinder about the axis of rotation. For a shell

with ends, rotating about its central transverse axis:

, ( )I =- _zpr 3r 3 + ha+ 6r2h+ 6rh 2 Ar (31)
6

In the case of a long, thin tube for which k approaches zero, the relaxation time

decreases to zero. This important fact indicates that such tumbling spin about the trans-

verse axis could be made to damp out very quickly by increasing the relative length of the

rod. In ferromagnetic materials additional damping as k_0 wouldoccur as two other effects

become prominent, namely, an increase toward the true magnetic permeability of the

apparent _2 along the geometric axis, and--for certain highly permeable materials which

approach saturation in weak fields--an increasing lag in longitudinal magnetization pro-

ducing hysteresis loss (Reference 4). Since hysteresis damping is linear rather than ex-

ponential (Reference 1, p° 285), its relative importance would also rise with decreasing

spin-rate.

MAGNETIC DAMPING OF ROTATION OF

VANGUARD I (1958 BETA 2)

Since Vanguard I is equipped with a radio powered by solar batteries, its rotation

rate, as measured by the signal modulation rate, has now been observed for over 2 years.

The resulting data are shown graphically in Figure 3. Regardless of the cause of the

apparent rotational damping, these observations may be represented approximately by

the empirical equation

c_ = 2.72 exp [5.03 x 10-8 (t0 t); rotat ions per second. (32)

Comparing this equation with Equation 20 and taking I = 69,203 gm-cm 2, as measured

before launching, gives the damping coefficient as C/:, = 0.00348 gm-cm2/see.
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In order to prove that this observed damping coefficient is essentially magnetody-

namical, the theoretical couples for the various satellite parts were computed from

Equations 9, 26 or 27, and 30, using the known properties of these parts. A diagram of the

satellite is shown in Figure 4, and Table 1 summarizes the details, of which more complete

discussions have been published elsewhere (References 5 and 6). Finally, the sum of the

theoretical couples of these parts was set equal to the observed damping coefficient, and

the equation solved for the effective magnetic field. After proper adjustment for geomag-

netic orientation of the spin axis, assuming constancy of this orientation since launching,

the resulting mean total field of 0.140 gauss was found to agree with the 0.141 gauss to be

expected from ground measurements extrapolated to the mean height of the Vanguard I
orbit.

°
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0.15
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\
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680 780 880
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Oo
: o 0
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(DEC. 12, 1960)

Figure 3 - Observed angular velocity vs time for Vanguard I (1958 Beta Z);

straight line represents exponential decay with relaxation time of 230 days
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Figure 4 - Cutaway of Vanguard I satellite

SOLAR CELLS

With reference to Table 1 it is important tc note that, although the c,:,u,31e due I,,

the six antennas was small, the couple due tc_ the less voluminous baltery cans ac-

counted for a quarter of the whole; since their permeability was 42 times as great, their

resulting couple was nearly 1800 times that for similar nonmagnetic bodies. Also of

significanee for application to possible magnetodynamic steering mechanisms is the var-

iation of the measured apparent _ of the ballery cans, f'_'_,m 65 f,,r a magnetic field

parallel to their geometrical axes d,_wn t, 2 for a field normal t,, tha! line.



14

Table 1

_Ou part

Instrument

package

6 Antenna

cups

6 Antennas

-7 Battery

cans

Vanguard I Parts of Magnetodynamie Significance

r h A r 1/¢r Effec-

Shape (cm) I(em) (cm) Material (emu45°C) tire

Spherical 8.1 ] 5 x 103 1

shell

shellCylindrical 2"5t10 [0.08 A1 5x103 1

Cylindrical: 2:1 [ 2.2 [0.05 A1 ....i- 5xI03 1

shells ] -_-- 15.... 5 X 103 - i

Cylindrical 0.4-] 3__shells_ [_051 :]---

Cylindrical1-0.79[--4.96 0.025- Cold-r011ed 13.6 x 103 42

shells | steel

Equation

Used

26 and 30

27 and 30

27 and 30

26

C/w

gauss_/

0.151H _

0.005H _

0.002H 2

0.009H 2

o.o67g

!

O:

¢.D
t_

I

MAGNETIC DAMPING OF ROTATION OF VANGUARD II

(1959 ALPHA 1)

Radio observations during the four weeks of battery life of Vanguard II yielded the

data on its rotation shown in Figure 5. These observations are represented empirically

by the equation

w = 0.25 exp I1.62 × 10"7 (t o - t) 1 rotation per
second, (33)

for (t o - t) in seconds. Again, comparison with Equation 20, with I = 1.977 × 10 6

gm-em 2 (measured before launching I indicates an observed damping coefficient

C/_ = 0.3205 gm-em2/see, whatever its cause. The cause must be essentially mag-

netodynamic, since equating the sum of the theoretical couples of all parts of the sat-

ellite to the observed couple implies an effective field agreeing with the field strength

extrapolated from the theory based on surface observations.

A diagram of the Vanguard II satellite is shown in Figure 6. The properties of the

satellite parts were more complex in this case than for Vanguard I. In Table 2 only the

effective permeabilities and theoretical couples of these parts are given, being suffi-

cient for the present discussion; more complete details have been published elsewhere

(Reference 7).
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Figure 5 - Observed spin-rate vs time for Vanguard II (1959 Alpha I); straight line
represents exponential decay with relaxation time of 72 days

The sum of the last column of Table 2, set equal to the observed damping couple, is

17.148 H 2 : 0.3205. (34)

Solving this gives the effective mean field normal to the spin-axis as 0.137 gauss, which

agrees well with the 0.133 gauss to be expected from surface geomagnetic measurements,

considering the satellite's axis-orientation and mean orbital height.

However, some of Table 2 should be regarded as a qualitative list of parts having

possible magnetodynamic importance rather than as exact numerical data. For the cores

of its last three items the permeability was tentatively assumed equal to the true perme-

ability tabulated for such material, although it is likely to be less than this value, due to

their small length-to-diameter ratios (Reference 4). On the other hand, no prototype has

been tested to determine whether the four permanent magnets with their mu-metal shields

may not, indeed, account for a considerable part of the total torque. Properly shaped and

standing alone, mu-metal can have an initial permeability as great as 20,000 or more; this

would have produced a couple hundreds of times that credited to the SSO-3 transformer

cores, thus practically stopping the satellite rotation within a few days. But their shapes,

in addition to the fact that these mu-metal shields may be nearly saturated by the per-

manent magnets they contain, might be expected to reduce the eddy-current torque on

them. This suggests possible controllability of the damping couple on a mu-metal shell

by retracting it to a position in a saturating field--an engineering application which will

be discussed further below.
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Figure 6 - The Vanguard II satellite (1959 Alpha 1)
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Table 2 Vanguard II Magnetodynamics

Part Effective Equation Used

sec gauss 2

Outer Shell i 9 6.364H 2

Instrument package I 26 and 30 0.228H 2

Structural Tubing

Antennas

Optical Tubing

4 Pern;anent Magnets

with Mumetal Shields

39 RM- 12-R

Battery Cans

23 RM- 502-R

Battery Cans

67 RM- 640-R

Battery Cans

2 SSO- 3

Transformer Cores

4 DOT

, Transformer Cores
l

<2

Neglected

42

48

35

2300

(Assumed)

2300

(Assumed)

50O

(Assumed)5 Relay Cores

26 and 30

26 and 30

27 and 30

26

26

27

6

(Approxinmted)

6

(Approximated)

26 and 30

(Integrated)

C/_,

gm cm 2
]

0.004H 2

0.054H 2

Negligible

Neglected

0.371I-I 2

0.200H

O.OSSH

9.480H 2

0.369H 2

0.023H 2
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Itshould be noted that a permanent magnet standing alone suffers mostly a periodic

restoring couple given by

C = MH sin a, (35)

where M is the magnetic moment of the magnet, and e the angle between its dipole line

and the external field vector H. For the usual magnetically hard material possessing

any considerable pole-strength, a relatively small damping couple might be expected in

a weak field such as the geomagnetic.

If,in addition to eddy-current damping, there were hysteresis damping, semi-logar-

ithmic plots such as Figures 3 and 5 would be concave downward. Thus, no quantitative

evidence of hysteresis damping appears here for either Vanguard Ior Vanguard H, al-

though for the latter the extent of the data is too short to be conclusive. In weak fields

varied only by slow rotation of the satellite,hysteresis loops--whose area measures

this loss--have a considerable width only for special magnetic material (Reference I,

p. 287).

!

SCIENTIFIC USES OF SPACE VEHICLE MAGNETODYNAMICS

SatelliteVanguard IIhas, like the planet Venus, no conspicuous surface markings --

either radio or optical -- by which its rotation could have been tracked after the end of

its four-week battery life. However, in lieu of practical arrangements, a simple the-

oretical extrapolation of Figure 5 indicates that,by October 1960, Vanguard IIwill be

rotating once per orbital revolution, like the earth's natural moon. A further similarity

to the moon would be that, since the inclinationof the satellitespin axis to the geomag-

netic field combined with its revolution around the earth produces an effectivegeomag-

netic rotation, the axis would have drifted to a stable mean orientation roughly parallel

to that of the earth. All these effects might be speeded up and accentuated by equipping a

satellitewith properly devised parts of highly permeable ferromagnetic material, as was

indicated in the preceding section, just as aerodynamic drag and radiation pressure effects

are accentuated in a balloon satellite.

Indeed, the present magnetodynamic theory may be used as well to discuss the rota-

tional history of the natural astronomical bodies (References 8 and 9). Itis thus found to

confirm the accepted age of the moon and planets, as well as that of the sun and many

other stars with present rotation rates considerably lower than would be expected in the

original state of their dynamical systems. For bodies beyond the moon the magnetic field

of the galaxy, which has been estimated from cosmic ray research and on other independ-

ent grounds to be about I0-s gauss in the present location of the solar system, would al-

ways produce some damping couple. Rotation of bodies like Mercury, Venus, and many

members of binary systems, located very near to the sun or other stars, may have been

slowed by the known magnetic fields of these stars. As yet, there has been no direct

measurement of the magnetic fields of other planets, but the 1-spin-per-revolution con-

ditionof some of their satellitesmay be indirect evidence of such fields.
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This condition suggests the possible scientific use of space-vehicle magnetodynamics

for simple magnetometry, particularly on moon and planetary probes for which long-term

radio telemetry might not be feasible or trustworthy. This report has shown how, even

without deliberate plans for this purpose, rotational studies of Vanguards I and II have

measured the mean geomagnetic field to within a few percent. Proper planning for such

measurements would include at least a thorough prelaunch study of the electrical and

magnetic properties of all parts of the space vehicle or, best of all, laboratory deter-

minations of a vehicle damping factor describing these properties for the whole vehicle

under all expected conditions of rotation, magnetic field, and temperature. It would

appear from Equations 20, 9, etc., that the damping time inherent in the vehicle might

be measured by

I _ 2H _ (36)
K - sec gau_s 2,

c

To avoid inaccuracies due to mechanical rotation in the laboratory, the procedure might

be based on the rotation of only the magnetic vector _, while measuring the couple c

with dynamometers attached to the static vehicle.

Another possible use of vehicle rotational studies would be thermometry. Since the

damping couple depends directly on the conductivity of the material, and conductivity is

a known (almost linear) function of temperature, the latter quantity might be indirectly

deduced even for a radio-dead vehicle from external optical tracking of its rotation (Ref-

erence 6).

In a vehicle under some internal control and having highly permeable sleeved tubes

whose damping couple is adjustable by varying their length or proportional shielding of

permanent magnetic rods, all these scientific uses could have been made much more con-

venient and accurate. Indeed, such a ferromagnetic rod with adjustable couple could be

used as a retractable magnetic "fin" for orienting or steering the vehicle.

APPLICATION OF THE THEORY TO ENGINEERING USES:

MAGNETODYNAMICAL STEERING

The steering mechanisms of all earth-bound vehicles, whether on land, water, or in the

air, depend on adjustable couple reactions to these respective media. "Steering" is es-

sentially only rotational control of the vehicle and always involves both a damping or ac-

celerating couple by which the rotation may be stopped or started, and a restoring or

directing couple which tends to keep the vehicle oriented in the desired direction. The
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former couple, but not the latter, requires variation of the total rotational energy of the

vehicle. Most unaccelerated gyroscopic or gravitational mechanisms for steering a

vehicle in the near vacuum of outer space offer only a restoring torque. A bar magnet

or solenoid would also offer the restoring couple given by Equation 35.

A damping or accelerating couple is difficultto achieve and to control on a space

vehicle. Mechanical expulsion of energy by "yo-yo" devices will dampen rotation, and

tangential rockets will either dampen or accelerate it,but both are difficultto arrange

for reliable,precise, and stable steering.

The theory and experience with satellitemagnetodynamics described herein seems

to offer an alternativeprinciple for cosmic steering -- especially for achieving a simple

and precisely controllable damping torque, since such torque varies as the square of mag-

netic permeability. Hollow rods of highly permeable material, having their effective mag-

netic permeability adjusted by variation of their length or magnetic saturation,would pro-

vide such a controllable damping torque. They would also provide considerable directional

torque in that their apparent permeability is at a maximum when they are parallel with the

field(Reference 4).
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List of Symbols

A area projected on plane of angular reference of elemen_taI _(thih) clSsed conductingo::.-A

loop or ring

conducting cross-sectional area of ,_'_i_i:ri'taYl_ol_ 0iJ rI_ _-_ :(t:"_)c :_, _::o::_,_ :!--_=::

b length of elemental conducting loop or ring

c mechanical rotational couple

e base of natural logarithms - 2.718...

_I magnetic field component normal to the spin axis

i_ total vector magnetic field

h height of right circular cylinder

I moment of inertia

K inherent vehicle rotational damping factor due to field H

k ratio of diameter to length of a right circular cylinder

L inductance of elemental loop or ring

magnetic moment of bar magnet; approximately, its length times its pole strength

resistance of elemental loop or ring

r radius of any body of revolution

t instant of time, or (with _) elapsed time

a arctan (Lw/R)

8 angle between the external field and the dipole line of a bar magnet or solenoid

I



effective magnetic permeability

p density

electrical conductivity, the reciprocal of resistivity

spherical or cylindrical coordinate of latitude

angular velocity
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